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Letters .

Comments on ~~NIOdeS of Propagation in a Coaxial

Waveguide with Lossless Reactive Guiding Surfaces”

R. A. WALDRON

Many authors have attempted to simplify the study of the mode

spectrum of a waveguide with a complicated wall structure by the
use of a surface-impedance boundary condition, and the above

paperl is a classic example of the exercise. The method depends on
two assumptions—that it is proper to express a ratio between the

tangential E and H fields as a boundary condition, and that such a

ratio can be expressed unambiguously in terms of the form of the

waveguide wall. That these assumptions are vafid is always taken for
granted by users of the method, including the present authors, but I

have never seen a proof of their validity. Unless such a proof can be

given, the results of calculations by the surface-impedance method

cannot be trusted.
The results given by the authors in their Fig. 1 appear unusual,

and do not agree with the results to the same problem obtained much

more simply by applying perturbation theory [1 ] to the coaxial line,

treated as a waveguide [1, sec. IV. F]. This suggests that the assump-

tions underlying the surface-impedance method require examination,
That the method has been widely used does not establish the validity

of the assumptions on which it is based.
I have made such a study in [2] where it is shown that there is no

value of surface impedance that can be substituted into the character-
istic equation obtained by the surace-impedance method that will
make it identical with the true characteristic equation. It is also

shown that, while approximate agreement between the characteristic

equations can be obtained for small surface impedances, the value to
be chosen for the surface impedance to secure this agreement is a

complicated function of frequency and depends on the mode of propa-
gation. Thus “surface impedance “ is not, as has always been sup-
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posed, a property of the surface, and its value cannot be known until

the solution to the problem under consideration is known. It is there-
fore of no help in solving a problem. It also follows that the assump-

tion that any desired reactance can be realized is unfounded.
In short, the assumptions on which the surface-impedance method

is based are invalid, and it is to this fact that the many strange re-

sults can be attributed that have been published by a number of
authors. In view of the findings of [2], all results obtained by th,e
surface-impedance method should be treated with caution.
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Reply% by R. K. A ~oraa

Waldron in his comment, as well as in [2] cited above, has assailed

the use of surface impedance as a boundary condition.
The concept of surface impedance is several decades old and its

use as a, boundary condition has been made by many investigators.

The conditions under which a sarface may be characterized by an
impedauce-type boundary condition have been discussed by Senior

[1] and Godzinski [2], and a further discussion of the usefulness of

these conditions in solving practical problems is available in Barlow
and Brown [3]. It is clear from [1 ] that it is possible, at least i n
principle, to devise structures with a prescribed value of sarf ace i m -

pedance, and so the use of surface impedance as a boundary conditioa

is j u stifi able on physical grounds. Though it is true that the surface-

impedance description is not valid right at the discontinuity, experi-

mental verification is obtained in microwave model experiments for

ground-wave propagation [4], [5].

The surface-impedance method has proved to be of valae in the

solution of many problems of practical interest. No contradictions are
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Computer Program Descriptions

Prefabricated Multilayer Section DesignProgram

PURPOSE:

LANGUAGE:
AUTHOR :

AVAILABILITY :
DESCRIPTION:

PMSDP searches within the transitional section

of an electromagnetic window configuration for
the arrangement of prefabricated mnltilayers that
yields the best broad-band frequency-matching

condition.

Fortran IV; source deck length 250 cards.
D. L. Huffman, Wright-Patterson Air Force

Base, Ohio 45433.
ASIS-NAPS Document No. NAPS-01940.
It is well known that suitablv designed transi-

.0

tional sections can reduce the reflection from

electromagnetic windows (radomes). The windows treated here are
ideal one-dimensional, structures, built up of dielectric materials that

are lossless. From the viewpoint of fabricating transitional sections,
practical considerations usually dictate that they decomposed of N

homogeneous layers. In this computer program it is assumed that the
N layers have been prefabricated, and the broad-band program is

directed toward assembling the N layers in the proper order so that

the lowest broad-band reflection coefficient is obtained from the as-
sembled multilayered section. There are N! (factorial) ways of posi-

tioning the layers in the multilayered section, and N! multilayered
sections are treated,

The order of thedielectric constants and th:thicknesses for the

prefabricated layers are represented by DK(I) and TH(l), with
1=1, ..., N. A portion of thecomputer program generates the N!

permutations of layer position for the N-layered fiection. Another por-
tionof the program calculates the input reflectivity for NF sampled
frequencies. This input reflectivity calculation is repeated until all
N! multilayered sections have been considerecl. All NF-N! input

reflectivity values are stored in a two-dimensional matrix. Another

portion of the computer program processes the stored input reflec-

tivity matrix data. For each multilayered section, the computer
arranges in a descending order of magnitude the values of input
reflectivity, that is, the values of input reflectivity that have been

calculated for different sampled frequencies. Then the column ele-
ments of the processed input reflectivity matrix are listed in ascend-
ing value, according to the magnitude of the first row elements as

arranged above. Fig. 1 indicates themultilayered transitional section.

APPLICATION

A large number of electromagnetic window configurations can be

studied by the permutation search method. The computer program

is written for the normal incidence case and only the possibility of a

single transitional section is discussed here. Required changes needed

to study other general window configurations can easily be provided

inthe computer program. Experience with theprogram has indicated

that, with N! cases for permutation search available, some transi-

tional sections can be found that produce the desired low reflectivity

over a wide frequency range.
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Fig. 1. Geometry of t~ansitional section for an electromagnetic
wundow configuration,

The distinct advantage of this permutation search method is that

overall design requirements of space or weight are not involved
because any improvement in the broad-band performance can be
attributed to the positional arrangement of the prefabricated multi-
layers. Other optimization methods [1] develop improved broad-
band performance by modifying the values for the dielectric con-

stants or the thicknesses of the layers. Such modifications may

require an investigation to determine whether the use of the optimum
transitional section is feasible.

RESULTS AND COMPUTING TIMES

The basic computer program was executed on Wright-Patterson

Air Force Base’s CDC 6600 computer. Thestorage capacity of this

computer is 400 000 octal words, thus permitting the chosen number

of layers N to be as large as seven. For an electromagnetic window


